MODULE V
PHP & POSTGRESQL:

PostgreSQL is a powerful, enterprise-class open source object-relational
database management system. PostgreSQL supports advanced data types and
advance performance optimization, features only available in the expensive
commercial database, like Oracle and SQL Server.

It has more than 15 years of active development and
architecture that has earned it a strong reputation for reliability, dat
and correctness. PostgreSQL runs on all major operating system
Linux, UNIX (AIX, BSD, HP-UX, SGI IRIX, Mac OS X, Solari&
Windows. This tutorial will give us quick start with PostgreSQ
comfortable with PostgreSQL programming.

make us

PostgreSQL is known for its reliability, data integrity and correctness. It
is compatible with all major operating systems like Lj , UNIX and Windows. It
is based on POSTGRES 4.2 and is developed, at rkeley Computer Science
Department, University of California. It is an advance BMS which is capable
of more than retrieving and updating data. Postgr is fully ACID compliant.
It supports foreign keys, joins, triggers /vi stored procedures. It includes
SQL: 2008 data types like NUMERIC, C RVAL and INTEGAR, etc. The
database helps store binary large obj ing audio, video and images. It
features a native programming interfa r C/C++, .Net, Java, Perl, Ruby,
Python, etc. Its other sophisticate include Multi-Version Concurrency
Control (MVCC), table space time recovery, nested transactions,
asynchronous replication S cated query planner, etc. It also supports
multi-byte character de and international character sets. It is
highly scalable in both/quantity of data to be managed and the number of
concurrent users to be :

PostgreSQL needs minimum efforts as it is quite stable. So, if we
develop PostgreSQL-based applications then the total cost of ownership will be
low as compated to other database management systems. It is a free database.
Its source % der the license of PostgreSQL. We can modify and distribute

PostgreSQ form.
Adv of PostgreSQL
> Source DBMS: Among current Open Source DBMS only the

PostgreSQL provides unlimited development possibilities. It also enables
users to join communities to post or share bugs and difficulties. o Freedom
of use and modify: *We can run PostgreSQL for any use. It can be
connected to multiple servers, cores and users. We are also free to modify it
to fulfill our needs. o *Unlimited copying and distribution: PostgreSQL
allows unlimited copying and distribution.

» ACID and Transaction: PostgreSQL support Atomicity, Consistency,
Isolation and Durability (ACID). o Multiple indexing techniques: Apart from

the B+ tree index techniques, it also provides various other techniques like
GIN (Generalized Inverted Index) and GST (Generalized Search Tree), etc.

> Full-text search: It offers full-text search when searching for strings.

> Diverse replication methods: It supports a variety of replication methods
like cascading, Slony-I and Streaming replication. o Diverse extension
functions: It is compatible with different techniques which are used to store
geographic data such as Key-Value Store, PostGIS and DBLink. o Cost-
effective: It is designed to have lower maintenance. o Cross-platform: It is
compatible with almost all brands of Unix and with Windows#%ia the
Cygwin framework.

data storage strategy (MVCC) which makes PostgreSQL hig
in high volume environments. o Complete Internet solutio es with
everything that we need to Web-enable our company. Our website will be
leveraged with PHP 4 Scripting Language, Apache Web Server and the Zone
Application server with online access to the PostgreSQL datastore. o Easy
migration: It comes with various tools that hel grating data from other
DBMS.

responsive

A Brief History of PostgreSQL:
PostgreSQL started its journe
Michael Stonebraker at UCB. He started Pe
in 1986. Ingres was developed betw
RDBMS theory. Later in 1994, it was ac
was developed between 1986
development of INGRES conce

es/ It was created by Professor
s as a follow-up project to Ingres
and 1985 according to classic
d by Computer Associates. Postgres
4. Its development included the
d on query language Quel and object

orientation. Its development based on the code base of INGRES. It was
commercialized as illu n t by Informix. Later in 2001, Informix was
bought by IBM. Postgre s developed between 1994 and 1995.

Two Ph.D. stu , Jolly Chen and Andrew Yu at Stonebanker’s lab

replaced the POSTQUEL query language of Postgres with a subset of SQL and
renamed it Postgres95. In 1996, a group of developers outside of Berkeley
science dep ent realize the potential of the system and devoted themselves to
Postgres95. Over the next eight years, this group transformed
the Postgre group created detailed regression tests for quality assurance,

codebg hey also filled the various gaps like documentation for users and
develot . After it is transformed into new database it started a new life in open
source world with various new features and it took its current name PostgreSQL.

PostgreSQL started with version 6.0, over the next four years it moved
from version 6.0 to version 7 which was loaded with major improvements and
new features such as: Unique SQL features: Many new features were added like
subsets, constraints, defaults, foreign keys, primary keys, quoted identifiers,
type casting, binary and hexadecimal integer input. Multiversion Concurrency
Control (MVCC): The Multiversion concurrency has replaced the table-level

locking. It allows online backups when a database is running and enables
readers to read consistent data. Better built-in types: Improved native types were
added including the various date/time types and extra geometric
types. Improved Speed: Speed and performance were increased by 20 to 40
percent and the backend start-up time was reduced by 80 percent. During next
four years after the release of versions 7.0 and 7.4 again a number of features
were added to PostgreSQL.

These features were Write-Ahead Log (WAL), prepared quersi€s, SQL
schemas, outer joins, SQL92 join syntax, complex queries, TOAST, IPv ext
indexing, auto-vacuum, improved SSL support, database statisticsginfor ion,
table functions, an optimizer overhaul, Perl/TCL procedural lang thon,
etc. Today, PostgreSQL has a large user base and it contindes to; improve.
Version 8.0 of PostgreSQL is supposed to have features like table“spaces, point
in time recovery, nestled transactions and java stored procedures. A number of
organizations including government entities and companies use PostgreSQL. We
can easily find it in ADO, NTT Data, CISCO, NO e, US Forestry Service,
Research in Motion and in The American Che 1 Societ

FEATURES OF POSTGRESQL
Compatible with various pla
middleware. It offers a most sophisticated

version concurrency control Mature
Compliant with the ANSI SQL sta

ing all major languages and
g mechanism Support for multi-

1 support for client-server network
architecture Log-based and trigger- eplication SSL Standby server and
high availability Object-oriented SI-SQL2008 compatible Support for
JSON allows linking wit oth stores like NoSQL which act as a federated
hub for polyglot databa

MYSQ POSTGRESQL
The MySQL project has its source | PostgreSQL is released under
code available under the terms of the GNU | PostgreSQL License.
License, and other proprietary agreements.
It's now ow by Oracle Corporation and | It's free and open-source software. That
editions means we will never need to pay
anything for this service

MyS ompliant only when using | PostgreSQL is completely ACID
with{ N d InnoDB Cluster Storage | compliant
engi

MySQL“performs well in OLAP and OLTP | PostgreSQL performance works best in
systems where only read speed is|systems which demand the execution of
important. complex queries

MySQL is reliable and works well with BI | PostgreSQL works well with BI
(Business Intelligence) applications, which | applications. However, it is more suited
are difficult to read for Data Warehousing and data analysis
applications which need fast read-write
speeds

Advantage of POSTGRESQL

» PostgreSQL can run dynamic websites and web apps as a LAMP stack
option

> PostgreSQL's write-ahead logging makes it a highly fault-tolerant database

» PostgreSQL source code is freely available under an open source license.
This allows us the freedom to use, modify, and implement it as per our
business needs.

» PostgreSQL supports geographic objects so we can use it for location-based
services and geographic information systems

> PostgreSQL supports geographic objects so it can be used as a tial
data store for location-based services and geographic informatien systems

» To learn Postgres, we don't need much training as its easy tg

» Low maintenance administration for both embedded and ente

Disadvantage of POSTGRESQL
» Postgres is not owned by one organization. So, it has had trouble getting its

name out there despite being fully featured an rable to other DBMS
systems

» Changes made for speed improvement req s work than MySQL as
PostgreSQL focuses on compatibility

» Many open source apps support y not support PostgreSQL

» On performance metrics, it is slower SQL.

Key Features of PostgreSQL
PostgreSQL runs on all majen,operating systems, including Linux, UNIX
(AIX, BSD, HP-UX, SGI IRIX X, Solaris, Tru64), and Windows. It
supports text, images, @ ideo, and includes programming interfaces
for C / C++, Java, Pe hon, Ruby, Tcl and Open Database Connectivity
(ODBC). PostgreSQL suppo a large part of the SQL standard and offers many
Qﬁ@e ollowing —

modern features includ
Complex SQL que
SQL Sub-selects
Fore1gn keys

aming Replication (as of 9.0)
tandby (as of 9.0)

YVVVVVVVVY

DATA TYPES

PostgreSQL supports a wide set of Data Types. Besides, users can
create their own custom data type using CREATE TYPE SQL command. There
are different categories of data types in PostgreSQL. They are discussed below.

Numeric Types

Numeric types consist of two-byte, four-byte, and eight-byte integers, four-byte
and eight-byte floating-point numbers, and selectable-precision decimals. The
following table lists the available types.

Name Storage Description Range
Size
smallint 2 bytes small-range integer -32768 to +32767
integer 4 bytes typical choice for -2147483648
integer +21474836
9223372036854
bigint 8 bytes large-range integer tQ
9223372036 807

up to 131072 digits

. before the decimal
user-specified

decimal variable recision. exact int; up to 16383
P ’ tsyafter the decimal
point
to 131072 digits
before the decimal
numeric variable point; up to 16383
digits after the decimal
point
6 decimal digits
real ..
precision
double 15 decimal digits
precision precision
smallserial 2 b incrementing 1 to 32767
integer
serial 4 bytes | futo-incrementing |4 5147483647
Iinteger
large auto-
bigseri 8 bytes incrementing 1 to
. 9223372036854775807
Iinteger
Monet es

money type stores a currency amount with a fixed fractional
precision. Values of the numeric, int, and bigint data types can be cast to money.
Using Floating point numbers is not recommended to handle money due to the
potential for rounding errors.

Name Storage Description Range
Size
-92233720368547758.08 to
money 8 bytes currency amount +92233720368547758.07

Character Types
The table given below lists the general-purpose character types available in
PostgreSQL.

Sl. No. Name & Description
1 character varying(n), varchar(n)
variable-length with limit
character(n), char(n)
fixed-length, blank padded
text
variable unlimited length

2

3

Binary Data Types
The bytea data type allows storage of binary strings as in the table given below.

Name Storage Size Description

bytea | 1 or 4 bytes plus the actual binary string | variable-length binary string

Date/Time Types
PostgreSQL supports a full set of SQL date an e types, as shown in table
below. Dates are counted according to the Gregeria lendar. Here, all the types
have resolution of 1 microsecond / 14/digi ept date type, whose resolution
is day.

Name Storage Size esc ion Low Value | High Value
timestamp [(p)] .
(without time | 8 bytes and time | 4713 e 294276 AD
(no e zone)
zone |
TIMESTAMPTZ | 8 bytes oth date and time, | 1715 e | 994276 AD
ith time zone
date 4 byte date (no time of day) | 4713 BC 5874897 AD
time [(p)] [
without time | 8 bytes time of day (no date) | 00:00:00 24:00:00
zone |
time [(p)] bytes times of day only, | 00:00:00+1 | 24:00:00-
time zone y with time zone 459 1459
inte €1% | 12 bytes time interval 178000000 | 178000000
] [(p) years
years

Boolean Type
PostgreSQL provides the standard SQL type Boolean. The Boolean data type can
have the states true, false, and a third state, unknown, which is represented by
the SQL null value.

Name Storage Size Description
boolean 1 byte state of true or false

Enumerated Type

Enumerated (enum) types are data types that comprise a static, ordered set of
values. They are equivalent to the enum types supported in a number of
programming languages.

Unlike other types, Enumerated Types need to be created using
CREATE TYPE command. This type is used to store a static, ordered set of
values. For example compass directions, i.e., NORTH, SOUTH, EAST, and WEST
or days of the week as shown below —

CREATE TYPE week AS ENUM (‘Mon', 'Tue', 'Wed', 'Thu', 'Fri’, 'Sats,'Sun');
Enumerated, once created, can be used like any other types.

Geometric Type
Geometric data types represent two-dimensional spatial objects. The most
fundamental type, the point, forms the basis for al ﬁ the other types. (point,
line, 1seg, box, path, polygon, circle)

Network Address Type

PostgreSQL offers data types to store IP
to use these types instead of plain text type
these types offer input error checkin d s
(cidr, inet, macaddr)

0, and MAC addresses. It is better
re network addresses, because

alized operators and functions.

Bit String Type
Bit String Types are used to
two SQL bit types: bit(n

@ t masks. They are either O or 1. There are
arying(n), where n is a positive integer.

Text Search Type

This type supports full earch, which is the activity of searching through a
collection of natural-language documents to locate those that best match a
query. There are two Data Types for this — (tsvector, tsquery)

Array Ty
PostgreS ives the opportunity to define a column of a table as a variable
lengt i ensional array. Arrays of any built-in or user-defined base type,

Declaration of Arrays
Array type can be declared as
CREATE TABLE monthly_savings (
name text,
saving_per_quarter integer]],
scheme text[][]

))

or by using the keyword "ARRAY" as
CREATE TABLE monthly_savings (
name text,
saving_per_quarter integer ARRAY[4],
scheme text[][]

))

Inserting values
Array values can be inserted as a literal constant, enclosing the eleme alues
within curly braces and separating them by commas. An example (i wn
below:

INSERT INTO monthly_savings

VALUES (‘Manisha’,

420000, 14600, 23500, 13250},

‘WFD”, “MF”}, {“FD”, “Property™}});

Accessing Arrays
An example for accessing Arrays is shown bel Thesco and given below will
select the persons whose savings are more se quarter than fourth
quarter.
SELECT name FROM monhly_] E saving_per_quarter(2] >
saving_per_quarter[4];

POSTGRESQL COMMANDS 0
CREATE DATABASE,

The CREATE DATABASE, state 5 used to create new PostgreSQL database.

Syntax:- CREATE DAT. databasename;
Example:- CREATE D SE college;

CREATE TABLE
TE TABLE is a keyword, telling the database system to create a

new table ique name or identifier for the table follows the CREATE
TABLE sta . Initially, the empty table in the current database is owned by
the g the command. Then, in brackets, comes the list, defining each
colu e table and what sort of data type it is.

Syntax

CREATE TABLE table_name (
Columnl_name TYPE column_constraint,
Column2_name TYPE column_constraint,
Column3_name TYPE column_constraint,

ColumnN_name TYPE column_constraint,)

Example

CREATE TABLE books (
bookid char(5) PRIMARY KEY,
title varchar(40) NOT NULL,
publisher varchar(40) NOT NULL,
price integer NOT NULL,

);

CREATE TABLE Persons |

);

PersonlID int,

LastName varchar(255),
FirstName varchar(255),
Address varchar(255),
City varchar(255)

Note:-
To show the schema or description of table

PostgreSQL column constraints
» NOT NULL - the value of the colum

CRE

\d table name ;

be NULL.

» UNIQUE - the value of the colu ’e¢ unique across the whole table.
However, the column can have NULL values because PostgreSQL
treats each NULL value to be“uniqu otice that SQL standard only allows

th as the UNIQUE constraint.

PRIMARY KEY straint is the combination of NOT
NULL and UNIQU . We can define one column as PRIMARY
KEY by using colufmns-l constraint. In case the primary key contains
multiple columns,
CHECK - enables 1 .
example, the values in the price column of the product table must be
positive values.

REFE CES - constrains the value of the column that exists in a column
in oth table. We use REFERENCES to define the foreign key
constraint

one NULL value in the co

LE AS
The PostgreSQL CREATE TABLE AS statement is used to create a

table from an existing table by copying the existing table's columns. It is
important to note that when creating a table in this way, the new table will be
populated with the records from the existing table (based on the SELECT
Statement).

The PostgreSQL CREATE TABLE AS statement is used to create a

table from an existing table by copying the existing table's columns. It is
important to note that when creating a table in this way, the new table will be

populated with the records from the existing table (based on the SELECT
Statement).

Syntax
CREATE TABLE new_table_name AS query;

Example
CREATE TABLE inventory AS
SELECT *
FROM products
WHERE quantity > 5;

SELECT

PostgreSQL SELECT statement is used to fetch the data f; a database
table, which returns data in the form of result table. These result tables are
called result-sets.

Syntax:
SELECT columnli, column2, columnN FRO. le” e;
Here, columnl, column?2...are the field whose values we want to fetch.

If we want to fetch all the fields availa e field, then we can use the
following syntax:
SELECT * FROM table_name;
Example
Exampl Description
SELECT Empid, fname, a M | It will display Empid, fname, salary
customer; columns only
SELECT * FROM custom It will display all columns

Because of its complexity, we will break down the PostgreSQL SELECT statement
tutorial into shorter and easy-to-understand tutorials so that we can learn
each clause faster.

LECT statement has the following clauses:

> @: f"distinct rows using DISTINCT operator.

> rows using ORDER BY clause.

» Filter rows using WHERE clause.

» Select a subset of rows from a table using LIMIT or FETCH clause.

» Group rows into groups using GROUP BY clause

» Filter groups using HAVING clause.

» Join with other tables using joins such as INNER JOIN, LEFT JOIN, FULL
OUTER JOIN, CROSS JOIN clauses.

» Perform set operations using UNION, INTERSECT, and EXCEPT.

SELECT INTO

The PostgreSQL SELECT INTO statement allows us to create a new
table and inserts data returned by a query. The new table columns have name
and data types associated with the output columns of the SELECT clause.
Unlike the SELECT statement, the SELECT INTO statement does not return data

to the client.

Syntax
SELECT
INTO newtable [IN externaldb]
FROM tablel;

SELECT column_name(s)
INTO newtable [IN externaldb]

FROM tablel;
Example Description
SELECT * INTO CustomersBackup2019 Create backup copy of
FROM Customers; stomers:
SELECT * INTO CustomersBackup2019 IN e IN clause to copy the

Backup.mdb' FROM Customers;

e into another database:

SELECT CustomerName, ContactName
INTO CustomersBackup2019 FROM
Customers;

py only a few columns into the
new table:

Copy only the German customers
into the new table:

SELECT * INTO CustomersBac 9
FROM Customers WHER
Country='Germany’;

SELECT Customers.Cus b@ﬂ ame,
Orders.OrderID INTO
CustomersOrderBackup2019 FROM
Customers LEFT JOIN Orders ON

Copy data from more than one
table into the new table:

Customers. merID=0Orders.CustomerlID;
DELET
ostgreSQL DELETE statement is used to delete a single record or
mul rds from a table in PostgreSQL.
Synta

DELETE FROM table_name [WHERE conditions];

Example

DELETE FROM book WHERE price < 100 ;
DELETE FROM contacts WHERE first_ name = 'Vimala',

The PostgreSQL UPDATE Query is used to modify the existing records
in a table. We can use WHERE clause with UPDATE query to update the selected
rows. Otherwise, all the rows would be updated.

Syntax
UPDATE table_name SET columnl = valuel, column2 = value2...., columnN
= valueN WHERE [condition];

Example
UPDATE COMPANY SET SALARY = 15000 WHERE ID = 3;

UPDATE contacts SET first_ name = Jane' WHERE contact_id
UPDATE contacts SET city='"Miami', state='Florida' WHERE contact_id >= 200;

INSERT INTO

The PostgreSQL INSERT statement is used rt a single record or
multiple records into a table in PostgreSQL. One,canlinisert a single row at a time
or several rows as a result of a query.

Syntax
INSERT INTO TABLE_NAME (column 2, columng3,...columnN)
VALUES (valuel, value2, value3,. lu

If we can use all attribute in same

INSERT INTO TABLE _NA (valuel, value2, value3,...valueN);
If we can insert multipl s me time

INSERT INTO table , column2, ...)

VALUES

(valuel, value2, .
(valuel, value2, ...),...;

NTO users (age, email, first_ name, last_ name) VALUES (30,
oubleos@gmail.com/’, 'Arjun’, 'Kumar’);

INSERT INTO users VALUES (2, 22, 'John', 'Smith', john@smith.com’);

INSERT INTO "EMPLOYEES"(

"ID", "NAME", "AGE", "ADDRESS", "SALARY")

VALUES (1, 'Ajeet’, 25, 'Mau ', 65000.00), (2, 'Rakul, 21, 'Shimla', 85000.00),
(3, 'Manisha', 24, 'Mumbai', 65000.00), (4, 'Larry’, 21, 'Paris', 85000.00);

PHP

[G S R G g g W g S

CONonROD =

- POSTGRESQL INTEGRATION:

pg_connect(),
pg_connection_status|)
pg_dbname()
pg_last_error()

pg_close()

pg_query()
pg_execute()

pg_fetch_row()
pg_fetch_array|()
pg_fetch_all()

. pg_fetch_assoc()

pg_fetch_object()

. pg_num_rows()
. pg_num_fields()
. pg_affected_rows|)

pg_free_result()

1. pg connect|()

database handle. PostgreSQL requires co
a single string, denoted by connecti
in this string, including:

>

>

to stgreSQL database, returning a
tion parameters to be submitted as
g. Several parameters are recognized

It is a function to use to con

connect_timeout: e er of seconds to continue waiting for a
connection respon ecifying zero or no value will cause the function to
wait indefinitely.

dbname: The nam e database we’d like to connect to.

host: The server location as defined by a hostname, such as
www.example.com, ecommerce, or localhost.
hosta The server location as defined by an IP address, such as

ore, we need to specify this parameter only if the destination server is
efating on another port.
user: The connecting user.

Syntax

pg_connect(connection_string)

Example

$pg = pg_connect("host=localhost user=postgres password=gems
dbname=college");

2. pg _close()

The database connections opened during the execution of a script are
automatically closed once the script completes. The connection will be closed as
soon as the script ends. To close the connection before end the script we can all

the function pg_close().

Syntax
pg_close(connection)

Example
<Pphp

$pg = pg_connect("host=localhost user=postgres password=g
dbname=college") or die("Can't connect to database.");
echo "This is where database operations are performed.”;

pg_close();
>

If multiple connections to, say, different databases

as its services are no longer needed. For instanc
<Pphp
$pg = pg_connect("host=localhost =
dbname=college");
$pg2 = pg_connect("host=example
dbname=school");

@n, we can close each

es/password=gems

postgres password=gems

echo "Perform some database’operations.
";
c

// We're finished with $p
pg._close($pg2);

the connection

echo "Perform ad al se operations.”;

// Close the $pg c on
pg_close($pg);
>

echo 'Successfully Connected to '. $db;

pg_close($con);
>

Example Output
<?php Successfully Connected
$db=college; to college
$con A ct("host=localhost dbname=%$db
user= password=gems");
if (Wc
die(’ d not connected to college:
“pg_last_error());
/
else

3. pg _query()
The pg_query() is used to execute query on the default database. Before

performing any operation on a PostgreSQL database, it is required to set a
connection to the PostgreSQL database we want to work with it. And this is done
by pg_connect() function.

Syntax

pg_query(query, connection_string);
Where query specifies the query string and is required. The connectio ied
the PostgreSQL connection to use and is required. If not speci ast

connection opened by pg connect() is used.

Example
<Pphp
$db=college;
$con = pg_connect("host=localhost dbname=%$db =postgres
password=gems");
if ($con) {
echo 'Successfully Connected to '. $db.
Sqry="select * from student’;
Sresult=pg_query($con, $qry);
while ($row = pg_fetch_row(Presu
echo "
\n";
echo "regno: $row, me. " $row[1] age: $row[2] mark: $row[4]";

",

<pr> 5

/

else
die('Could no cted to college: '.pg._last_error());

pg_close($con);
>

Suceess onnected to college

name: raju age: 17 mark: 54
105 name: vani age: 19 mark: 67

o: 103 name: arjun age: 20 mark: 81
regno: 108 name: kumar age: 17 mark: 55
regno: 107 name: sukanya age: 19 mark: 95

4. pg execute()

It sends a request to execute a prepared statement with given
parameters, and waits for the result. The command to be executed is specified by
naming a previously-prepared statement, instead of giving a query string. This
feature allows commands that will be used repeatedly to be parsed and planned

just once, rather than each time they are executed. The statement must have
been prepared previously in the current session. pg execute() is supported only
against PostgreSQL 7.4 or higher connections; it will fail when using earlier
versions.

Syntax
pg_execute ($connection, string, array)

Example
<Pphp
$db=college;
$con = pg_connect("host=localhost dbname=%$db user=postgr
password=gems");
if ($con) {
echo 'Successfully Connected to '. $db."

";
Sresult=pg_prepare($con, "myqry","select * from student where
name=%$1");
Sresult=pg_execute($con, "myqry”,a ("vintisha'));
while ($row = pg_fetch_row($result))
echo "
\n";
echo "regno: $row[0] na

] age: $row[2] mark: $row[4]";
/
echo "

";
Sresult=pg_execute($con,
while ($row = pg_fetch_ro
echo "
\n";
echo "regno: @ name: $row(1] age: $row[2] gender: $row|3]
mark: $row[4]";
/

/

else
die('Could not connected to college: '.pg._last_error());

pg_close($con);
>

5. pg last_

returns the last error message for a given connection. The error
mes ay be overwritten by internal PostgreSQL (libpq) function calls. It
may n eturn an appropriate error message if multiple errors occur inside a
PostgreSQL module function.

Syntax
pg_last_error(connection)

Example

<Pphp
$db=college;

$con = pg_connect("host=localhost dbname=%$db user=postgares
password=gems");

if (I$con) {
die('Could not connected to college: ');
echo pg_last_error($con);

/

else
echo 'Successfully Connected to '. $db;

pg_close($con);
>

6. pg connection_status|()
It returns the status of the specified connection.

Syntax

pg_connection_status (connection);
Example @

<?php

$db=college;

$con = pg_connect("host=localhost db/user=postgres
password=gems");

$start=pg_connection_status($co

if ($start == pgsql_connection_ok) {
echo 'Connection status is

telse{
echo 'Connectionsstat @ DK,
/

pg_close($con);
>

Output
Connection status is OK

7. pg db e
It returns't ame of the database of given PostgreSQL connection resource.

Syn
bname (connection)

Example
<Pphp
$db=college;
$con = pg_connect("host=localhost dbname=%$db user=postgres
password=gems");
echo "The current database name is ".pg_dbname($con);

pg_close($con);

>

Output
The current database name is college

8. pg fetch_row()
It fetches one row of data from the result associated with the

specified result resource.

Syntax
pg_fetch_row ($result)

Example

<?php

$db=college;

$con = pg_connect("host=localhost dbname=%$db user=postgres

password=gems");

if ($con) {

echo 'Successfully Connected to . $db."
<b
$qgry="select name, mark from student”;
Sresult=pg_query($con, $qry
while ($row = pg_fetch_row($re
echo "
\n";

echo "name: $row[0] ma row[1]";
/
/
else
die('Could n n college: '.pg_last_error());
pg_close($con);
>
Output
Successfully Connected to college
name: raj rk: 54
name: vani ark: 67
name mark: 81
nam r mark: 55

name: anya mark: 95

9. pg fetch_array()

It is an extended version of pg fetch_row(). In addition to storing the data in the
numeric indices (field number) to the result array, it can also store the data
using associative indices (field name). It stores both indicies by default.

Syntax
pg_fetch_array (result)

Example
<?php
$db=college;
$con = pg_connect("host=localhost dbname=%$db user=postgres
password=gems");
if ($con) {
echo 'Successfully Connected to '. $db."

";
$qgry="select name, mark from student”;

Sresult=pg_query($con, $qry);
while($arr=pg_fetch_array($result, NULL,PGSQL_NUM))

echo $arr[0];
echo $arr[1];

echo "
";

| <
/
else

die('Could not connected to college: \grror{)};

pg_close($con);

>
Output 0
Successfully Connected to colle
raju 54
vani 67
arjun 81
kumar 55
sukanya 95

10. pg fetc ()
It r returng,an that contains all rows (records) in the result resource.
Synt
h_all ($result);

Example

<?php

$db=college;
$con = pg_connect("host=localhost dbname=%$db user=postgres
password=gems");

if ($con) {

echo 'Successfully Connected to '. $db."

";
$qgry="select * from student’;

Sresult=pg_query($con, $qry);
if (1$result) {
echo "An error occurred.\n'";
exit;
/
Sarr = pg_fetch_all($result);
print_r($arr);
/
else
die('Could not connected to college: '.pg_last_error());

pg_close($con);
>

Output
Successfully Connected to college

Array ([0] => Array ([regno] => 102 [nam
[mark] => 54) [1] => Array ([regno] => 105
[gender] => f [mark] => 67) [2] => Array
=> 20 [gender] => m [mark] => 81)
kumar [age] => 17 [gender] => m [ma
[name] => sukanya [age] => 19 [g

[agé] => 17 [gender] => m
ani [age] => 19

103 [name] => arjun [age]
regno] => 108 [name] =>

:)[4] => Array ([regno] => 107

11. pg fetch_assoc()
It returns an associative array
equivalent to calling pgafetc
parameter. It only retu n
use pg_fetch_row().

with PGSQL_ASSOC as the optional third

orresponds to the fetched row (records). It is
atlve array. If we need the numeric indices,

Syntax
pg._fetch_assoc (result);

Example

echo 'Successfully Connected to . $db."

";
Sqry="select regno, name, mark from student";
Sresult=pg_query($con, $qry);
if (1$result) {

echo "An error occurred.\n'";

exit;
/
while ($row = pg_fetch_assoc($result)) {

echo $row['regno]." ";
echo $row[name'l." ";
echo $row['mark’]." ";
echo"
";
/

/

else
die('Could not connected to college: '.pg._last_error());

pg_close($con);
>

Output
Successfully Connected to college

102 raju 54
105 vani 67

103 arjun 81
108 kumar 55
107 sukanya 95

12. pg fetch_object()

It returns an object with properties that
names. It can optionally instantiate ob
parameters to that class's construct

bond to the fetched row's field
of a specific class, and pass

Syntax
g_fetch_object (result);

Example
<?php
$db=college;
$con = pg_connect("host=localhost dbname=%$db user=postgres

="select * from student order by name";
result=pg_query($con, $qry);
if (1$result) {
echo "An error occurred.\n";
exit;
/
while ($data = pg_fetch_object($result)) {

",

echo $data->regno . " ('
echo $data->name . "): ;

>

echo $data->mark . "
";

/

pg_free_result($result);
/
else
die('Could not connected to college: '.pg._last_error());

pg_close($con);
>

Output
Successfully Connected to college

103 (arjun): 81
108 (kumar): 55
102 (raju): 54

107 (sukanya): 95
105 (vani): 67

13. pg num_rows|()
It will return the number of rows in a PostgreSQL result resource.

Synatx
pg_num_rows (result);

Example
<?php
$db=college;
$con = pg_connect("host=1 S name=%$db user=postgres
password=gems");
if ($con) {
echo 'Successful anected to . $db."

";
Sqgry="select
Sresult=pg_qt
if (1$result) {
echo "An error occurred.\n";
exit;

Scon, $qry);

= pg_num_rows($result);

!

$rows . " row(s) returned.\n';

die('Could not connected to college: '.pg._last_error());

pg_close($con);
>

Output
Successfully Connected to college

6 row(s) returned.

14. pg num_fields()
It returns the number of fields (columns) in a PostgreSQL result resource.

Synatx
pg_num_fields (result);

Example
<Pphp
$db=college;
$con = pg_connect("host=localhost dbname=%$db user=postgres
password=gems");
if ($con) {
echo 'Successfully Connected to '. $db."&br>
";
Sqry="select * from student’;
Sresult=pg_query($con, $qry);
if (1$result) {
echo "An error occurred.\n'";
exit;
/
$num = pg_num_fields($r
echo $num . " field(s n

/

else

die('Could no cted to college: '.pg_last_error());
pg_close($con);
>

Output
Succe Connected to college
5 fiel returned.

ted_rows|()

the number of tuples (instances/records/rows) affected
by INSERT, UPDATE, and DELETE queries. Since PostgreSQL 9.0 and above, the
server returns the number of selected rows. Older PostgreSQL return O for
SELECT.

Syntax
pg_affected_rows (result);

Example
<?php
$db=college;
$con = pg_connect("host=localhost dbname=%$db user=postgres
password=gems");
if ($con) {
echo 'Successfully Connected to . $db."

";
Sqgry="select * from student where mark > 60";
Sresult=pg_query($con, $qry);
if (1$result) {
echo "An error occurred.\n'";
exit;
/
$cmdtuples = pg_affected_rows($result);
echo $cmdtuples . " tuples are affected.\n";

/
else

die('Could not connected to college: ' la@(});
pg_close($con);

>

Output
Successfully Connected to college

4 tuples are affected.
16. pg free_result()

It frees the memory andidat ciated with the specified PostgreSQL query
result resource. This fu on, need only be called if memory consumption during

script execution is a pre Dtherwise, all result memory will be automatically
freed when the script ent

Synatx
pg._fre ult (result);

Example

ollege;
= pg_connect("host=localhost dbname=%$db user=postgres
password=gems");
if ($con) {
echo 'Successfully Connected to '. $db."

";
Sqry="select * from student where gender = f'";
Sresult=pg_query($con, $qry);
if (1$result) {
echo "An error occurred.\n'";
exit;

/

$num = pg_num_rows($result);
echo $num . " row(s) returned.\n";
pg._free_result($result);

/

else
die('Could not connected to college: '.pg._last_error());

pg_close($con);
>

Output
Successfully Connected to college

3 row(s) returned.

INSERTION AND DELETION OF DATA USING PHP

Example of Insertion of data using PHP o
<html><head>

<title>Retriving of data from PHP</title>
</head><body>
<form action="" method="post">
<h2>Enter the Details of a h2>
</br>
Enter the Reg No
<input type="text" name=
Enter the Name

<input type= %

"

><hbr>

name">

Enter t

<input type=' ame="years">

Enter er

<input type= ame="gen">

Enter the Mark

<input type="text" name="score">

br> ut type="submit" />
</body></html>

$fnamel $_POST['fname];

Syears1=$_POST[years];

$gen1=$ POST[gen’;

$scorel1=$_POST/['score’];

$db=college;

$con = pg_connect("host=localhost dbname=%$db user=postgres
password=gems");

if ($con) {

echo '

Successfully Connected to . $db."

";
$qgry="select * from student’;
Sresult=pg_query($con, $qry);
while ($row = pg_fetch_row($result)) {
echo "
\n";
echo "regno: $row[0] name: $row[1] age: $row(2] gender: $row[3]
mark: $row[4]";
/
echo"
rrrrrrrr
";
$qry1="insert into student
(regno,name,age,gender,mark)values($reg 1, $fnamel’,$year.
1)

%- score
$resultl=pg_query($con, $qryl);
Sresult=pg_query($con, $qry);
while ($row = pg_fetch_row($result)) {

echo "
\n";
echo "regno: $row[0] name: $row(1] agé: $row(2] gender: $row[3]
mark: $row[4]";

/
/

else

die('Could not connected to ege: _last_error());
pg_close($con);
}

>

20php.php

Enter the Details of a STUDENT

Enter the Reg No ‘éE:G
Enter the Name [dhoni
Enter the Age 28
Enter the Gender |m

Enter the Mark ?Bﬂ

Subrmit |

Successfully Connected to college

regno: 102 name: raju age: 17 gender: m mark: 54
regno: 105 name: vani age: 19 gender: fmark: 67
regno: 103 name: arjun age: 20 gender: m mark: 81
regno: 108 name: kumar age: 17 gender: m mark: 55
regno: 107 name: sukanya age: 19 gender: f mark: 95
regno: 110 name: fathima age: 22 gender: f mark: 69
regno: 201 name: Virat age: 23 gender: m mark: 29
regno: 203 name: sachin age: 24 gender: m mark: 66
regno: 208 name: dravid age: 28 gender: m mark: 34
regno: 213 name: aparna age: 22 gender: f mark: 88
regno: 5535 name: azhar age: 26 gender: m mark: 19
After Inserting the Values

regno: 102 name: raju age: 17 gender: m mark: 54
regno: 105 name: vani age: 19 gender: f mark: 67
regno: 103 name: arjun age: 20 gender: m mark: 81
regno: 108 name: kumar age: 17 gender: m mark: 55
regno: 107 name: sukanya age: 19 gender: f mark: 95
regno: 110 name: fathima age: 22 gender: f mark: 69
regno: 201 name: Virat age: 23 gender: m mark: 29
regno: 203 name: sachin age: 24 gender: m mark: 66
regno: 208 name: dravid age: 28 gender: m mark: 54
regno: 213 name: aparna age: 22 gender: f mark: 88
regno: 335 name: azhar age: 26 gender: m mark: 19
regno: 666 name: dhoni age: 28 gender: m mark: 90 =

H O Type here to search i)

Example of Deletion o
<html>
<head>
<title>Deleting of data from PHP</title>
</hea
<bo

s§ing PHP

="" method="post">
Enter the Datais of a STUDENT</h2>
</br>
3>Enter the Reg No to DELETE
<input type="text" name="reg">

<input type="submit" / >
</form>
</body>
</html>

<Pphp

if ($_POST){

$no=$_POST|[reg];

$db=college;

$con = pg_connect("host=localhost dbname=%$db user=postgres

password=gems");

if ($con) {

echo '

Successfully Connected to . $db."

";

$qry1="select * from student”;
$qry2="delete from student where regno = $no";
Sresultl=pg_query($con, $qryl);
while ($row = pg_fetch_row($resultl)) {

echo "
\n";
echo "regno: $row[0] name: $row(1] age: $row(2] ge $row|3]
mark: $row[4]";
/
echo "

Regno $no is now deleted
";
Sresult2=pg_query($con, $qry2);
Sresultl=pg_query($con, $qryl);
while ($row = pg_fetch_row($resultl))
echo "
\n";
echo "regno: $row[0] na
mark: $row[4]";
/

] age: $row[2] gender: $row|[3]

/

else

die('Could not conne ege: '.pg_last_error());
pg_close($con);
/

>

| @ file to transfer - Google Search % | # phpPgAdmin

Odeletion®620using %20,
8 % My br

Enter the Datais of a STUDENT

Enter the Reg No to DELETE

Successfully Connected to college

regno: 102 name: raju age: 17 gender: m mark: 54
regno: 105 name: vani age: 19 gender: f mark: 67
regno: 103 name: arjun age: 20 gender: m mark: 81
regno: 108 name: kumar age: 17 gender: m mark: 55
regno: 107 name: sukanyva age: 19 gender: f mark: 95
regno: 110 name: fathima age: 22 gender: f mark: 69
regno: 444 name: rthh age: 12 gender: m mark: 45

Regno 444 is now deleted

regno: 102 name: raju age: 17 gender: m mark: 54
regno: 105 name: vani age: 19 gender: f mark: 67
regno: 103 name: arjun age: 20 gender: m mark: 81
regno: 108 name: kumar age: 17 gender: m mark: 55
regno: 107 name: sukanya age: 19 gender: f mark: 95
regno: 110 name: fathima age: 22 gender: f mark: 69

L S 0720 AM
H O Type here to search 0 T o~ g D) NG e (1]

DISPLAYING DATA FROM POSTRGR

Example
<html><head>
<title>Retriving of data f @ </ title>
</head><body>
<form action="" met post”>
<h2>Entert s of a STUDENT</h2>
</br>
<h3>Enter th No

<input type="text" name="reg">

<input type="submit" />
</form>< y></html>

POST){
$_POST[reg;
$db=college;
$con = pg_connect("host=localhost dbname=%$db user=postgres
password=gems");
if ($con) {

echo '

Successfully Connected to '. $db."

";
Sqgry="select * from student where regno =$no’;
Sresult=pg_query($con, $qry);
while ($row = pg_fetch_row($result)) {

echo "
\n";
echo "regno: $row[0] name: $row[1] age: $row[2] gender: $row[3]
mark: $row[4]";
/
/

else
die('Could not connected to college: ".pg_last_error());
pg._close($con);

>

Enter the Details of a STUDENT

Enter the Reg No |
| Submit |

Successfully Connected to college

regno: 108 name: kumar age: 17 gender: m mark: 55

INTRODUC TO AJAX

is Asynchronous JavaScript and XML) is a set of web

niques using many web technologies on the client-side to create
10U eb applications. Ajax is a client-side script that communicates

@ a server/database without the need for a post back or a complete

page refrésh. The best definition for Ajax is “the method of exchanging data with

a server, and updating parts of a web page - without reloading the entire page.”

AJAX is a new technique for creating better, faster, and more
interactive web applications with the help of XML, HTML, CSS and Java Script.
Conventional web application transmit information to and from the sever using
synchronous requests. This means we fill out a form, hit submit, and get
directed to a new page with new information from the server. With AJAX when
submit is pressed, JavaScript will make a request to the server, interpret the

results and update the current screen. In the purest sense, the user would never
know that anything was even transmitted to the server.

Classic web pages, (wWhich do not use AJAX) must reload the entire
page if the content should change. Examples of applications using AJAX: Google
Maps, Gmail, Youtube, and Facebook tabs. Following diagram shows how AJAX
works.

Browser Server \
An event occurs... * Process HTTPRequest j
*Create an ? E

s Create a response and
send data back to the
browser

¥MLHttpRequest object

& Send HttpRequest

Browser

sProcess the returned
data using JavaScript — =

sUpdate page content

AJAX is based on internet stand Mes a combination of:
» XMLHttpRequest obj @ ange data asynchronously with a server)
» JavaScript/DOM (ateract with the information)
» CSS (to style the dg
» XML (often used

mat for transferring data)

AJAX applications are browser- and platform-independent. AJAX was made
popular in 2005 by Google, with Google Suggest. Google Suggest is using AJAX
to create a v, dynamic web interface: When we start typing in Google's search

box, a JavaScri nds the letters off to a server and the server returns a list of
suggestio
IMP ATION OF AJAX IN PHP

AJAX is used to create more interactive applications. The following
example will demonstrate how a web page can communicate with a web server
while a user type characters in an input field:

field,

Start typing a name in the input field below:
First name:

Suggestions:

In the example above, when a user types a character in
a function called "showHint()" is executed. The function is tri e

onkeyup event. Here is the HTML code:

<html> <head> <script>
function showHint(str) {
if (str.length == 0) {
document.getElementByld("txtHint").innerHTML = "’
return;

}else{

var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange = function()
if (this.readyState == 4 && this.sto
document.getElementByld("txtHint").i

/
P8
xmlhttp.open("GET", "gethint.ph
xmlhttp.send();

/
/

<pStart typing'a
<form>

First name: <input type=="text" onkeyup=="showHint(this.value)"=>
</form>

of the txtHint placeholder and exit the function. However, if the input

field is'not empty, do the following:

Create an XMLHttpRequest object

Create the function to be executed when the server response is ready

Send the request off to a PHP file (gethint.php) on the server
Notice that q parameter is added to the url (gethint.php?q="+str)
And the str variable holds the content of the input field

The PHP File - "gethint.php"
The PHP file checks an array of names, and returns the corresponding name(s)
to the browser:

<Pphp

// Array with names

$af] = "Anna”;

$af] = "Brittany";

$af] = "Cinderella”;

$af] = "Diana’;

$af] = "Eva’;

$af] = "Fiona";

$afl = "Gunda";

$af] = "Hege";

$af] = "Inga’;

$af] = "Johanna';

Saf] = "Kitty";

$af] = "Linda";
$af] = "Nina";
$af] = "Ophelia’;

$af] = "Petunia’;
Saf] = "Amanda’;
$af] = "Raquel’;
$af] = "Cindy";
$af] = "Doris";
$af] = "Eve";

$af] = "Evita”;
$af] = "Sunniva';

Saf] = "Tove";
$af] = "Unni’;
Saf] = "Violet";
$af] = "Liza";

$af] = "Elizabeth';
$af] = "Ellen";

"

// lookup all hints from array if $q is different from
if (5 1==") {
$q = strtolower($q);
Slen=strlen($q);
foreach($a as $name) {
if (stristr($q, substr($name, 0, $len))) {
if ($hint —= ") {

$hint = $name;

}telse{
$hint .= ", $name";

/
/
/
/
// Output "no suggestion” if no hint was found or output correct values
echo $hint === "" ? "no suggestion" : $hint;
>

<

