
SOFTWARE
ENGINEERING

UNIT 4

CODING

Coding
The coding is the process of transforming the design of a system into a
computer language format. This coding phase of software development is
concerned with software translating design specification into the source
code. It is necessary to write source code & internal documentation so that
conformance of the code to its specification can be easily verified.
Coding is done by the coder or programmers who are independent people
than the designer. The goal is not to reduce the effort and cost of the coding
phase, but to cut to the cost of a later stage. The cost of testing and
maintenance can be significantly reduced with efficient coding.

Goals of Coding
1.To translate the design of system into a computer language format: The
coding is the process of transforming the design of a system into a computer
language format, which can be executed by a computer and that perform
tasks as specified by the design of operation during the design phase.
2.To reduce the cost of later phases: The cost of testing and maintenance
can be significantly reduced with efficient coding.
3.Making the program more readable: Program should be easy to read and
understand. It increases code understanding having readability and
understandability as a clear objective of the coding activity can itself help in
producing more maintainable software.

Characteristics of Programming Language
Readability: A good high-level language will allow programs to be written in some methods that resemble a

quite-English description of the underlying functions. The coding may be done in an essentially self-

documenting way.

Portability: High-level languages, being virtually machine-independent, should be easy to develop portable

software.

Generality: Most high-level languages allow the writing of a vast collection of programs, thus relieving the

programmer of the need to develop into an expert in many diverse languages.

Brevity: Language should have the ability to implement the algorithm with less amount of code. Programs

mean in high-level languages are often significantly shorter than their low-level equivalents.

Error checking: A programmer is likely to make many errors in the development of a computer program. Many

high-level languages invoke a lot of bugs checking both at compile-time and run-time.

Cost: The ultimate cost of a programming language is a task of many of its characteristics.
Quick translation: It should permit quick translation.
Efficiency: It should authorize the creation of an efficient object code.
Modularity: It is desirable that programs can be developed in the language as several separately compiled modules, with
the appropriate structure for ensuring self-consistency among these modules.
Widely available: Language should be widely available, and it should be feasible to provide translators for all the major
machines and all the primary operating systems.

Standards and Guidelines.

 Good software development organizations maintain some well-defined and
standard style of coding called coding standards.. They usually make their own
coding standards and guidelines depending on what suits their organization best
and based on the types of software they develop.It is very important for the
programmers to maintain the coding standards other wise the code may be
rejected during code review.·

 Purpose of Having Coding Standards:·

• A coding standard gives a uniform appearance to the codes written by different engineers..
• It improves readability, and maintainability of the code and it reduces complexity also.
• It helps in code reuse and helps to detect error easily.
• It promotes sound programming practices and increases efficiency of the programmers

A coding standard lists several rules to be followed during coding, such as the way variables are to be named, the
way the code is to be laid out, error return conventions, etc.

Coding Standards
General coding standards refers to how the developer writes code, so here we will discuss some essential standards
regardless of the programming language being used.

The following are some representative coding standards:

1.Indentation: Proper and consistent indentation is essential in producing easy to read and maintainable
programs.

Indentation should be used to:
1. Emphasize the body of a control structure such as a loop or a select statement.
2. Emphasize the body of a conditional statement
3. Emphasize a new scope block

2.Inline comments: Inline comments analyze the functioning of the subroutine, or key aspects of the
algorithm shall be frequently used.
3.Rules for limiting the use of global: These rules file what types of data can be declared global and
what cannot.

4.Structured Programming: Structured (or Modular) Programming methods shall be
used. "GOTO" statements shall not be used as they lead to "spaghetti" code, which is
hard to read and maintain, except as outlined line in the FORTRAN Standards and
Guidelines.
5.Naming conventions for global variables, local variables, and constant identifiers: A
possible naming convention can be that global variable names always begin with a
capital letter, local variable names are made of small letters, and constant names are
always capital letters.
6.Error return conventions and exception handling system: Different functions in a
program report the way error conditions are handled should be standard within an
organization. For example, different tasks while encountering an error condition should
either return a 0 or 1 consistently.

Coding Guidelines
General coding guidelines provide the programmer with a set of the best methods which can be used to make programs
more comfortable to read and maintain. Most of the examples use the C language syntax, but the guidelines can be
tested to all languages.

1. Line Length: It is considered a good practice to keep the length of source code lines at or below 80
characters. Lines longer than this may not be visible properly on some terminals and tools. Some printers
will truncate lines longer than 80 columns.

2. Spacing: The appropriate use of spaces within a line of code can improve readability.
Example:
Bad: cost=price+(price*sales_tax)

fprintf(stdout ,"The total cost is %5.2f\n",cost);
Better: cost=price+(price*sales_tax)

fprintf (stdout,"The total cost is %5.2f\n",cost);

3. The code should be well-documented: As a rule of thumb, there must be at least one comment line on
the average for every three-source line.

4. The length of any function should not exceed 10 source lines: A very lengthy function is generally
very difficult to understand as it possibly carries out many various functions. For the same reason,
lengthy functions are possible to have a disproportionately larger number of bugs.

5. Do not use goto statements: Use of goto statements makes a program unstructured and very tough
to understand.

6. Inline Comments: Inline comments promote readability.

7. Error Messages: Error handling is an essential aspect of computer programming. This does not only
include adding the necessary logic to test for and handle errors but also involves making error
messages meaningful.

8.Avoid using a coding style that is too difficult to understand

9.Avoid using an identifier for multiple purposes

STRUCTURED CODING
• In structured programming , the whole program is sub divided into small

modules so that the program becomes easy to understand.
• The purpose of structured programming is to linearize control flow

through a computer program so that the execution sequence follows the
sequence in which the code is written. This linear flow of control can be
managed.

• This enhances the readability, testability, and modifiability of the
program.

• Structured programming allows the programmer to understand the
program easily.(If a program consists of thousands of instructions and an
error occurs then it is complicated to find that error in the whole
program, but in structures programming, we can easily detect the error
and then go to that location and correct it which saves a lot of time.)

These are the following rules in structured programming:
Structured Rule One: Code Block
If the entry conditions are correct, but the exit conditions are wrong, the error must be in the block. This is
not true if the execution is allowed to jump into a block. The error might be anywhere in the program.
Debugging under these circumstances is much harder.

Rule 1 of Structured Programming: A code block is structured, as shown in the figure. In flow-charting
condition, a box with a single entry point and single exit point are structured. Structured programming is a
method of making it evident that the program is correct.

Structure Rule Two: Sequence
A sequence of blocks is correct if the exit conditions of each block match the entry conditions of
the following block. Execution enters each block at the block's entry point and leaves through the
block's exit point. The whole series can be regarded as a single block, with an entry point and an
exit point.
Rule 2 of Structured Programming: Two or more code blocks in the sequence are structured, as
shown in the figure.

Structured Rule Three: Alternation
If-then-else is frequently called alternation (because there are alternative options). In structured programming, each
choice is a code block. If alternation is organized as in the flowchart at right, then there is one entry point (at the top)
and one exit point (at the bottom). The structure should be coded so that if the entry conditions are fulfilled, then
the exit conditions are satisfied (just like a code block).
Rule 3 of Structured Programming: The alternation of two code blocks is structured, as shown in the figure.

Structured Rule 4: Iteration
Iteration (while-loop) is organized as at right. It also has one entry point and one exit point. The entry
point has conditions that must be satisfied, and the exit point has requirements that will be fulfilled.
There are no jumps into the form from external points of the code.
Rule 4 of Structured Programming: The iteration of a code block is structured, as shown in the figure.

Structured Rule 5: Nested Structures
In flowcharting conditions, any code block can be spread into any of the structures. If there is a
portion of the flowchart that has a single entry point and a single exit point, it can be summarized as a
single code block.
Rule 5 of Structured Programming: A structure (of any size) that has a single entry point and a single
exit point is equivalent to a code block. For example, we are designing a program to go through a list
of signed integers calculating the absolute value of each one. We may (1) first regard the program as
one block, then (2) sketch in the iteration required, and finally (3) put in the details of the loop body,
as shown in the figure.

Coding Styles
• Programming style refers to the technique used in writing the source code for a

computer program.
• Most programming styles are designed to help programmers quickly read and

understands the program as well as avoid making errors.
• The goal of good programming style is to provide understandable ,straightforward

, elegant code.
• The programming style used in a various program may be derived from the

coding standards of a company or computing organization , as well as the
preferences of the actual programmer.

Documentation Guidelines
• Software documentation is a critical process in the overall software

development process.
• At various stages of development multiple documents may be created for

different users.
• In modular programming documentation becomes even more important

because different modules of the software are developed by different
teams. If anyone other than the development team wants to or needs to
understand a module, good and detailed documentation will make the
task easier.

. These are some guidelines for creating the documents
• Documentation should be from the point of view of the reader.
• Document should be unambiguous.
• There should be no repetition·
• Industry standards should be used.
• Documents should always be updated·
• Any outdated document should be phased out

Advantages of Documentation
These are some of the advantages of providing program documentation
• Keeps track of all parts of a software or program.
• Maintenance is easier·
• Programmers other than the developer can understand all aspects of

software·
• Improves overall quality of the software·
• Assists in user training

A software can have many types of documents associated with it.
 Some of the important ones are·
• User manual - It describes instructions and procedures for end users to

use the different features of the software..
• Operational manual - It lists and describes all the operations being

carried out and their inter-dependencies..
• Design Document - It gives an overview of the software and describes

design elements in detail. It documents details like data flow diagrams ,
entity relationship diagrams, etc.

• Requirements Document - It has a list of all the requirements of the
system as well as an analysis of viability of the requirements. It can have
user cases, real life scenarios, etc.

• Technical Documentation - It is a documentation of actual programming
components like algorithms, flowcharts, program codes, functional modules,
etc.

• Testing Document - It records test plan, test cases, validation plan, verification
plan, test results, etc. Testing is one phase of software development that needs
intensive documentation.

• List of Known Bugs - Every software has bugs or errors that cannot be removed
because either they were discovered very late or are harmless or will take more
effort and time than necessary to rectify. These bugs are listed with program
documentation so that they may be removed at a later date. Also they help the
users, implementers and maintenance people if the bug is activated.

Modern Programming language features
1. Type checking
Type checking means checking that each operation receives proper number of
arguments and are of proper data type.
A=B*j+d; * and - are basically int and float data types based operations and if any
variable in this A=B*j+d; is of type other than int and float then compiler will
generate type error.
Two ways of Type Checking:
1) Dynamic Type Checking:
It is done at runtime . It uses concept of type tag which is stored in each data
objects that indicates the data type of the object.
Example:· An integer data object contains its 'type' and 'values' attribute.
* So Operation only be performed after type checking sequence in which type tag of
each argument is checked. If the types are not correct then error will be generated.

2)Static Type Checking:
 Static Type Checking is done at compile time.
 Information needed at compile time is provided by declaration by language
structures.
The information required includes:
1) for each operation: The number, order, and data type, of its arguments.
2) For each variables: Name and data type of data object.
 Example: A+B; in this type of A and B variables must not be changed.
3) for each constant: Name and data type and value .
Eg: const int x=28;

const float x=2.087;. In this data type, the value and name is specified and in
further if checked value assigned should match its data type.

2.Data abstraction
• In software engineering , abstraction is a technique for controlling the

complexity of computer systems.
• Abstraction is the process of providing only the essentials and hiding the

details.
• It works by establishing a level of simplicity on which a person interacts

with the system, suppressing the more complex details below the current
level.

• The programmer works with an idealized interface (usually well defined)
and can add additional levels of functionality that would otherwise be too
complex to handle which are hidden from the end user.

• Data abstraction allows handling pieces of data in meaningful ways

• Data abstraction separates the interface and implementation by enforcing a
separation between the abstract properties of a data type and the details of
its implementation·

• Most programming languages provide data abstraction at various levels like:

Data types: Users are allowed to use the data types without knowing the
implementation

Abstract data types : It is a description of components of the data and the
operations that are allowed on the data which are independent of the
implementation . It explains only the set of values and operations on the data.
It does not specify how data will be organised in memory and what algorithms
are used for implementing the operations details .All primitive datatypes and
UDTs are abstract datatypes.

Information hiding: Providing only the interface and hiding the implementation
details in software development . Certain functions abstract the code and
reveals the interface.

Modules : This mechanism allows partitioning the program into separate parts
.It is a mechanism for an abstraction to be composed of a number of datatypes
of which ,it is desired to give clients a limited view.

3.Exception handling
• Exception handling is the process of responding to the occurrence of

exceptions - anomalous or exceptional conditions requiring special processing -
during the execution of a program.

• Exception handling is a well-known mechanism for introducing forward error
recovery in software systems.

• Many important object-oriented programming languages, such as Java,
C++,and C# have incorporated this mechanism.

• In traditional software development, a large part of the code of a reliable
software system is dedicated to detection and handling of exceptions. This
redundant part of the code is usually the least understood, tested, and
documented.

• Software developers incorporate exception handling strategy into
system design from the start which is very difficult after
implementation.

• An exception handler code constitutes the actions executed in
response to a raised exception . Control is transferred to the exception
handler when the corresponding exception condition is raised.

• The most popular styles of exception handling are 'try and catch’,
'throw’, except’, rescue’, finally' ,'ensure' etc

4. User defined datatype(UDT)
• Modern programming languages provide a variety of predefined datatypes like

int ,float ,char etc.
• But not all languages provide all types. Some types may be pre defined and user

can define other types in terms of existing types . Eg: Character string may be
assigned by user as variable length arrays of characters.

• Fundamental reasons of providing user defined datatypes:
1)To allow specification of often needed types in terms of existing types
2)To allow mapping of concept from problem domain into implementation
language

• A UDT is a datatype that is derived from an existing datatype.
• UDTs are used to extend built-in types already available and create customized

datatypes.
• Once UDTs are defined ,they are used as elementary datatypes.
• UDTs can also be used as a template for creating datablocks (eg. Structure,class

etc)·
• Programming language C supports the use of two UDTs type defintion(typedef) and

enumeration(enum):
Eg: typedef int age;
 age x,y;
 enum colours{black,blue,red};
 colours foreground,background;

5. Concurrency mechanism
• Concurrency mechanism involves the execution of two or more segments of a

program concurrently independent of the order of execution.
• Program segments are called tasks or processes.· On a single processor machine , the

execution independent program segments can be interleaved to achieve processing
efficiency.

• Three fundamental approaches to concurrent programming are
 1) Shared variables
 2) Asynchronous message passing
 3) Synchronous message passing

Shared variables.
• The multiple processes have access to a common region of memory.
• The simplest form is the 'test and set' approach.
• When two tasks are to synchronize, the first task to reach its

synchronization point will test and then set a shared memory cell to
indicate that it is waiting for the second task.

Asynchronous message passing.
• It involves association of buffers with concurrent tasks.
• A sending task places information in the receiving task buffer.
• Items are removed from the buffer by the receiver as needed.. Removal

will be on the first in first out basis

Synchronous message passing.
• The method is called rendezvous. Both symmetric and asymmetric rendezvous are

possible
• In symmetric rendezvous first task waits for the next task.
• The output from the first task is the input to the second task.
• The tasks proceed concurrently.
• Each process is required to know the name of the other process involved in the

rendezvous.
• Asymmetric rendezvous is similar to a procedure call.
• Information can be transferred between tasks using parameter lists and global

variables.

	Slide 1: SOFTWARE ENGINEERING
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

