
PYTHON
UNIT 2

9
/2

4
/2

0
2

3

Sample Footer Text 1

Contents

Boolean Expressions

 Compound Boolean expressions

 Decision Statements

 If statements

 If else statements

 Nested if Statements

 Multiway if elif-else statements

 Loops

 The while statement

 Range functions

 F or statement

 Nested loops

 Break and continue statements

 Infinite Loops

Boolean Expressions in Python

A Boolean value is either true or false. In Python, the two Boolean values are True and False,
and the Python type is bool.
A Boolean expression is an expression that evaluates to produce a result which is a Boolean
value. The == operator is one of six common comparison operators which all produce
a bool result.
For example, the operator == tests if two values are equal. It produces (or yields) a Boolean
value:

print("Is five equal 5 to the result of 3 + 2?")
print(5 == (3 + 2))
print("Does five equal six?")
print(5 == 6)

OUTPUT

Is five equal 5 to the result of 3 + 2?
True
Does five equal six?
False

x == y # Produce True if ... x is equal to y
x != y # ... x is not equal to y
x > y # ... x is greater than y
x < y # ... x is less than y
x >= y # ... x is greater than or equal to y
x <= y # ... x is less than or equal to y

A Boolean value is either true or false. In Python, the two Boolean values

are True and False, and the Python type is bool.

 Almost any value is evaluated to True if it has some sort of content.

 Any string is True, except empty strings.

 Any number is True, except 0.

 EG:

print(10 > 9)
print(10 == 9)
print(10 < 9)

Will produce result as:

True

False

False

Eg: x = "Hello"
 y = 15
 print(bool(x))
 print(bool(y))
Will both produce True.

In fact, there are not many values that evaluate to False, except empty
values, such as (), [], {}, "", the number 0, and the value None. And of
course the value False evaluates to False.

bool(False)
bool(None)
bool(0)
bool("")
bool(())
bool([])
bool({})

Compound Boolean Expression
A combination of two or more Boolean expression using logical operators are

called compound boolean expression.

 The and, or , not are the basic Boolean operators.

 The not operator: it’s a unary operator, it takes a single operand and inverts

its boolean value.

 And operator: it is a binary operator. It s value is true if both operands are

true.

 Or operator: it is binary operator.it is true if at least one of the operand is

true.

Operator Description Example

and Returns True if both statements
are true

x < 5 and x < 10

or Returns True if one of the
statements is true

x < 5 or x < 4

not Reverse the result, returns
False if the result is true

not(x < 5 and x < 10)

The OR operator
Using the OR operator, we can create a compound expression that is true when either of two conditions
are true.
One way to implement that logic is with two separate if statements, A much better approach is to use
an OR operator to combine those two conditions.

if (temperature < 40 or weather === "rain"):

print("Wear a jacket!")

Another example:
AnimalString = 'We were looking for a mouse in our house.’

s = AnimalString
if 'dolphin' in s or 'mouse' in s or 'cow' in s:

print('1: At least one listed animal is in the AnimalString.')

The AND operator
Using the AND operator, we can create a compound expression that is true only when both of the
conditions are true.
For example, here’s a program where one of the expressions (time_available_minutes > 120) is true.
Because we’re using “and” and not “or“, the compound expression evaluates to false, so the else clause
is executed.

money_available_dollars = 3
time_avaialble_minutes = 180
if money_available_dollars > 10 and time_available_minutes > 120:

print("Go out with friends")
else:

print("Stay home")

The NOT operator
Using the NOT operator, we can reverse the truth value of an entire expression, from true to false or false to
true.
With not, you can negate the truth value of any Boolean expression or object. This functionality makes it
worthwhile in several situations:

•Checking unmet conditions in the context of if statements and while loops

•Inverting the truth value of an object or expression
•Checking if a value is not in a given container
•Checking for an object’s identity

The not keyword is a logical operator, and is used to reverse the result of the conditional statement:

Example
Test if a is NOT greater than b:
a = 33
b = 200
if not a > b:
print("a is NOT greater than b")

Decision Statements

In Python, decision making statements are those that decide whether a block of statements has

to execute or not based on a condition. Decision making statements are also called Conditional

Statements.

 Python supports variety of decision making statements.

 If statement

 if else statement

 Nested if statement

 if elif else statement

• Decision-making statements in programming languages decide the
direction(Control Flow) of the flow of program execution.

• Decision structures evaluate multiple expressions which produce
TRUE or FALSE as outcome. You need to determine which action to
take and which statements to execute if outcome is TRUE or FALSE
otherwise.

• Decisions in a program are used when the program has conditional choices
to execute a code block. Let's take an example of traffic lights, where
different colors of lights lit up in different situations based on the
conditions of the road or any specific rule.

If statements

The if statement is the most simple decision-making statement. It is used to decide whether a
certain statement or block of statements will be executed or not.
• The statement must be indented at least one space right of the if statement

• In case there is more than one statement after the if condition , then each statement

must be indented using the same number of spaces to avoid indentation errors.

• The statement within the if block are executed if the Boolean expression evaluates to

true

Syntax :

if condition:

Statements to execute if condition is true

true

If-else Statements

In conditional if Statement the additional block of code is merged as else statement which is
performed when if condition is false.
Syntax:
if (condition):

Executes this block if condition is true
else:

Executes this block if condition is false

Eg:

x= 3
if == 4:

print("Yes")
else:

print("No")

if..else chain statement
letter = "A"
if letter== "B":
print("letter is B")

else:
if letter == "C":
print("letter is C")

else:
if letter == "A":

print("letter is A")
else:

print("letter isn't A, B and C“)

Output:
letter is A

Nested if Statements

if statement can also be checked inside other if statement. This conditional
statement is called a nested if statement. This means that inner if condition
will be checked only if outer if condition is true and by this, we can see
multiple conditions to be satisfied.

Syntax:
if (condition1):

Executes when condition1 is true
if (condition2):

Executes when condition2 is true
if Block is end here

if Block is end here

Nested if statement example
num= 10
if num>5:

print("Bigger than 5")
if num <= 15:

print("Between 5 and 15“)

OUTPUT

Bigger than 5 Between 5 and 15

if elif-else statements

The if-elif statement is shortcut of if..else chain. While using if-elif statement at the end
else block is added which is performed if none of the above if-elif statement is true.
Syntax:-
if (condition):

statement
elif (condition):

statement
.
.
else:

statement

if-elif statement example

letter = "A"

if letter == "B":
print("letter is B")

elif letter == "C":
print("letter is C")

elif letter == "A":
print("letter is A")

else:
print("letter isn't A, B or C")

OUTPUT
letter is A

 The while Loop

 The range() function

 The for loop

Nested Loop

 The break statement

 The continue statement

 Infinite loops

Loops

Sr.No. Name of the loop Loop Type & Description

1 While loop Repeats a statement or group of statements while a given
condition is TRUE. It tests the condition before executing the
loop body.

2 For loop This type of loop executes a code block multiple times and
abbreviates the code that manages the loop variable.

3 Nested loops We can iterate a loop inside another loop.

A loop is a control structure that can execute a statement or group of statements
repeatedly. Python has three types of loops: while loops, for loops, and nested loops.

While Loops
A while loop will repeatedly execute a code block as long as a condition evaluates to True.
The condition of a while loop is always checked first before the block of code runs. If the
condition is not met initially, then the code block will never run.
Syntax:

while <condition>:
 { code block }

Eg:
i = 1
while i < 6:
print(i)
i = i + 1
Will print from 1 to 5

Using else Statement with while Loops
As discussed earlier in the for loop section, we can use the else statement with the while loop also. It has the same
syntax.

• Python supports to have an else statement associated with a loop statement.

• If the else statement is used with a while loop, the else statement is executed when the
condition becomes false.

Eg:
#Python program to show how to use else statement with the while loop
counter = 0
while (counter < 10):

counter = counter + 3
print("Python Loops")

else: # Once the condition of while loop gives False this statement will be executed
print("Code block inside the else statement")

OUTPUT
Python Loops

Python Loops

Python Loops

Python Loops

Code block inside the else statement

The for Loop
Python's for loop is designed to repeatedly execute a code block while iterating through a
list, tuple, dictionary, or other iterable objects of Python. The process of traversing a
sequence is known as iteration.

Syntax of the for Loop

for value in sequence:
{ code block }

In this case, the variable value is used to hold the value of every item present in the
sequence before the iteration begins until this particular iteration is completed.
Loop iterates until the final item of the sequence are reached.

Else in For Loop
The else keyword in a for loop specifies a block of

code to be executed when the loop is finished:

 Python supports to have an else statement

associated with a loop statement

 If the else statement is used with a for loop, the

else statement is

executed when the loop has exhausted iterating the list.

Eg:
for x in range(6):
print(x)

else:
print("Finally finished!")

OUTPUT
0
1
2
3
4
5
Finally finished!

Python program to show how if-else statements work
string = "Python Loop"

Initiating a loop
for s in a string:

giving a condition in if block
if s == "o":

print("If block")
if condition is not satisfied then else block will be executed
else:

print(s)
OUTPUT
P

Y

t

h

If block

n

L

If block

If block

p

Python program to show how the for loop works

Creating a sequence which is a tuple of numbers
numbers = [4, 2, 6, 7, 3, 5, 8, 10, 6, 1, 9, 2]

variable to store the square of the number
square = 0

Creating an empty list
squares = []

Creating a for loop
for value in numbers:

square = value ** 2
squares.append(square)

print("The list of squares is", squares)

OUTPUT
The list of squares is [16, 4, 36, 49, 9, 25, 64, 100, 36, 1, 81, 4]

Range Function

The built-in function range() is the right function to iterate over a sequence of

numbers. It generates an iterator of arithmetic progressions.

range(start, stop, step size)
If the step size is not specified, it defaults to 1. Start has default value zero.

 Range function has one , two , or three parameters.

 The last two parameters are optional.

 The general form of range function

 List(range(1,6))

[1,2,3,4,5]
Python For Loop with a step size
This code uses a for loop in conjunction with the range() function to generate a sequence
of numbers starting from 0, up to (but not including) 10, and with a step size of 2. For each
number in the sequence, the loop prints its value using the print() function. The output will
show the numbers 0, 2, 4, 6, and 8.

https://www.geeksforgeeks.org/python-range-function/

print(range(15))

print(list(range(15)))

print(list(range(4, 9)))

print(list(range(5, 25, 4)))

OUTPUT
range(0, 15)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

[4, 5, 6, 7, 8]

[5, 9, 13, 17, 21]

Print numbers from 1-100 using for loop?

Python program to iterate over a sequence with the help of indexing

tuple_ = ("Python", "Loops", "Sequence", "Condition", "Range")

iterating over tuple_ using range() function
for iterator in range(len(tuple_)):

print(tuple_[iterator].upper())

OUTPUT
PYTHON

LOOPS

SEQUENCE

CONDITION

RANGE

Python Nested Loops

Loops Inside Loops
A nested loop is a loop inside a loop.
The "inner loop" will be executed one time for each iteration of the "outer loop":
Eg:
adj = ["red", "big", "tasty"]
fruits = ["apple", "banana", "cherry"]

for x in adj:
for y in fruits:
print(x, y)

OUTPUT
red apple
red banana
red cherry
big apple
big banana
big cherry
tasty apple
tasty banana
tasty cherry

Loop Control Statements
Continue Statement
▪ The continue statement is used to skip the rest of the code inside the loop for the current iteration.

▪ Loop does not terminate but continues with the next iteration

▪ Continue statement is used to end the current iteration in a for loop or while loop and continues to the
next iteration

Python program to show how the continue statement works
Initiating the loop
for string in "Python Loops":

if string == "o" or string == "p" or string == "t":
continue

print('Current Letter:', string)

OUTPUT
Current Letter: P

Current Letter: y

Current Letter: h

Current Letter: n

Current Letter:

Current Letter: L

Current Letter: s

Break Statement
It stops the execution of the loop when the break statement is reached.

Python program to show how the break statement works

Initiating the loop
for string in "Python Loops":

if string == 'L':
break

print('Current Letter: ', string)

OUTPUT
Current Letter: P

Current Letter: y

Current Letter: t

Current Letter: h

Current Letter: o

Current Letter: n

Current Letter:

Infinite loop

A loop becomes infinite loop if a condition never becomes FALSE. You must use caution

when using while loops because of the possibility that this condition never resolves to a

FALSE value. This results in a loop that never ends. Such a loop is called an infinite loop.

Loops are generally aimed to repeat a particular set of statements until a given condition is fulfilled. However,
there may be a case when a condition is never fulfilled, as a result of which statements are executed again
and again. We call this “Infinite looping”. Hence, in other words, Infinite loops are the loops that run
indefinitely until the program is terminated.
Simple example of Infinite loop:
while True:
 print("True")

	Slide 1: PYTHON
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

