Python unit 4 -part 2
List

Python List

Python lists are one of the most versatile data types that allow us to work with multiple elements at once. For

example,

a list of programming languages

['Python', 'C++', 'JavaScript']

Create Python Lists

In Python, a list is created by placing elements inside square brackets (1, separated by commas.

list of integers

my list = [1, 2, 3]

A list can have any number of items and they may be of different types (integer, float, string, etc.).

empty list

my list = []

list with mixed data types

my list = [1l, "Hello", 3.4]

A list can also have another list as an item. This is called a nested list.

nested list

my list = ["mouse", [8, 4, 6], ['a']l]

Access List Elements

There are various ways in which we can access the elements of a list.

List Index

We can use the index operator 11 to access an item in a list. In Python, indices start at 0. So, a list having 5 elements will have an
index from O to 4.

Trying to access indexes other than these will raise an 1ndexerror. The index must be an integer. We can't use float or other

types, this will result in TypeError.

Nested lists are accessed using nested indexing.

my. last=]"p>, “r’,

first item
print(my_list[0]) # p

third item
(my_list[2]) # o

fifth item
print(my_list[4]) # e

Nested List
n_list = ["Happy". [2. 0, 1, 511

Nested indexing
print(n_list[0][1])

Output

1t(n_list[1][3])

Error! Only integer can be used for indexing
int(my_list[4.0])

raceback (most recent call last):
File “"<string>", line 21, in <module>
TypeError: list indices must be integers or slices, not float

Negative indexing

Python allows negative indexing for its sequences. The index of -1 refers to the last

item, -2 to the second last item and so on.

Negative indexing in lists
my list = ['p','r",'0",'b","e"]

last item
print(my_list[-1])

fifth last item
print(my_list[-5])

Run Code »

Output

length=5

index 0 1 2 3 4
negative index -5 -4 -3 -2 -1

List indexing in Python

List Slicing in Python
We can access a range of items in a list by using the slicing operator :.

Note: When we slice lists, the start index is inclusive but the end index is exclusive. For example, ny 1ist([2:
5] returns a list with elements at index 2, 3 and 4, but not 5.

List slicing in Python

my list = ['p’,

elements from index 2 to index 4
print(my_list[2:5])

elements from index 5 to end
print(my_list[5:])

elements beginning to end
print(my_list[:])

Add/Change List Elements

Lists are mutable, meaning their elements can be changed unlike string or tuple.

We can use the assignment operator = to change an item or a range of items.

Correcting mistake values in a list
odd = [2, 4, 6, 8]

change the 1st item
odd[0] = 1

orint(odd) Output

change 2nd to 4th items

odd[1:4] = [3, 5, 7] Lo o ol

2. 3, 55, Z1

print(odd)

https://www.programiz.com/python-programming/string
https://www.programiz.com/python-programming/tuple

We can add one item to a list using the append () method or add several items using the extend () method.

Appending and Extending lists in Python
odd = [1, 3, 5]

odd.append(7)

print(odd)
odd.extend([9, 11, 131)

print(odd)

We can also use + operator to combine two lists. This is also called concatenation.

The + operator repeats a list for the given number of times.

Concatenating and repeating lists
odd = [1, 3, 5]

print(odd + [9, 7, 5])

print(["re"] * 3)

Output

s 35 50 92 75051

['re’; “re ' “re‘]

we can insert one item at a desired location by using the method insert () or insert multiple items by
squeezing it into an empty slice of a list.

Demonstration of list insert() method
odd = [1, 9]
odd.insert(1,3)

yrint (odd)
odd[2:2] = [5., 7]

print(odd)

Output

Bl 3 e g

e 35 7. 9]

Delete List Elements

We can delete one or more items from a list using the Python del statement. It can even delete the list

entirely_ # Deleting list items
my=list = Fpls ri o

delete one item
el my_list[2]

print(my_list)

delete multiple items
I my list[1:5]

print(my_list)

delete the entire list
my_list

Error: List not defined
orint(my_list)

Output

[ips it b
['p'. 'm]

Traceback (most recent call last):
File “"<string>", line 18, in <module>
NameError: name 'my_list' is not defined

https://www.programiz.com/python-programming/del

We can use remove () to remove the given item or pop () t0o remove an item at the given index.

The pop () method removes and returns the last item if the index is not provided. This helps us implement lists

as stacks (first in, last out data structure).

And, if we have to empty the whole list, we can use the ciear () method.

my list = ['p’,'r",’
my_list.remove('p")

Output: ['r*, 'o",
print(my_list)

Output: ‘o'
print(my_list.pop(1))

Output: ['r*, 'b",
print(my_list)

Output: 'm’
print(my_list.pop())

Output: ['r*, 'b",
print(my_list)

my_list.clear()

Output: []
print(my_list)

Output

Finally, we can also delete items in a list by assigning an empty list to a slice of

elements.

>> my_list = ['p','r','0o","
>> my_list[2:3] =

>>> my_list

' b

>> my_list[2:5
>> my_list
i e]

Python List Methods

Python has many useful list methods that makes it really easy to work with lists. Here are some of the commonly used list

methods. Methods Descriptions
append() adds an element to the end of the list
extend() adds all elements of a list to another list
insert() inserts an item at the defined index
removel() removes an item from the list
popl() returns and removes an element at the given index
clear() removes all items from the list
index() returns the index of the first matched item
count() returns the count of the number of items passed as an argument
sort() sort items in a list in ascending order
reverse() reverse the order of items in the list

copyl() returns a shallow copy of the list

https://www.programiz.com/python-programming/methods/list

Example on Python list methods
my_list = [3, 8, 1, 6, 8, 8, 4]

Add 'a' to the end
my_list.append('a"')

Output: [3, 8, 1, 6, 8, 8, 4, 'a']
print(my_list)

Index of first occurrence of 8
print(my_list.index(8)) # Output: 1

Count of 8 in the list
print(my_list.count(8)) # Output: 3

output:

L o [l R e

'al]

Other List Operations in Python

List Membership Test

We can test if an item exists in a list or not, using the keyword in .

my list = ['p*, 'r",

Output: True
t('p’ my_ list)

Output: False

('a' in my_list)

Output: True
print(‘c' not in my_list)

Output

Iterating Through a List

Using a for loop we can iterate through each item in a list.

fruit in ['apple’, 'banana’, 'mango’]:
print("I like"”,fruit)

Output

I like apple

I like banana
I like mango

Python List pop()

The pop () method removes the item at the given index from the list and returns the removed item.

The syntax of the pop () method is:

list.pop (index)

e The pop () method takes a single argument (index).
e The argument passed to the method is optional. If not passed, the default index -1 is passed as an argument (index
of the last item).

e If the index passed to the method is not in range, it throws IndexError: pop index out of range exception.

The pop () method returns the item present at the given index. This item is also removed from the list.

Example 1: Pop item at the given index from the list

programming languages list
languages = ['Python', *Java', 'C++', 'French', 'C']

remove and return the 4th item
return_value = languages.pop(3)
print('Return Value:', return_value)

Updated List
print('Updated List:', languages)

Output

Return Value: French

Updated List: ['Python’, ‘'Java', 'C++', 'C']

Note: Index in Python starts from O, not 1.

Example 2: pop() without an index, and for negative indices

programming languages list
languages = ['Python’, "Java', 'C++', 'Ruby’, 'C’ Output

remove and return the last item
('When index is not passed:')

When index is not passed:

print('Return Value:', languages.pop()) Return Value: C
print('Updated List:', languages) Updated List: ['Python’, ‘Java', 'C++', "Ruby’]
remove and return the last item When -1 is passed:
print('\nWhen -1 is passed:"') Return Value: Ruby
-int('Return Value:', languages.pop(-1)) Updated List: ['Python’, 'Java', 'C++']

print('Updated List:', languages :
‘ C guages) When -3 is passed:

Return Value: Python
Updated List: ['Java’, 'C++']

remove and return the third last item

print('\nWhen -3 is passed: ")

int('Return Value: ', languages.pop(-3))
('Updated List:', languages)

If you need to remove the given item from the list, you can use the remove() method.

And, you can use the de1 statement to remove an item or slices from the list.

https://www.programiz.com/python-programming/methods/list/remove
https://www.programiz.com/python-programming/del#items-list

Python List sort()

The sort () method sorts the elements of a given list in a specific ascending or descending order.

The syntax of the sort () method is:

list.sort(key=..., reverse=...)

Alternatively, you can also use Python's built-in sorted() function for the same purpose.

sorted(list, key=..., reverse=...)

Note: The simplest difference between sort () and sorted() is: sort () changes the list directly and

doesn't return any value, while sorted () doesn't change the list and returns the sorted list.

https://www.programiz.com/python-programming/methods/built-in/sorted

By default, sort () doesn't require any extra parameters. However, it has two optional parameters:

e reverse - If True, the sorted list is reversed (or sorted in Descending order)

e key - function that serves as a key for the sort comparison

The sort () method doesn't return any value. Rather, it changes the original list.

If you want a function to return the sorted list rather than change the original list, use sorted().

Example 1: Sort a given list

vowels list
vowels = ['e', 'a’,

sort the vowels
vowels.sort()

print vowels
print('Sorted list:*, vowels)

Output

Sorted list:

Sort in Descending order

The sort() method accepts a reverse parameter as an optional argument.

Setting reverse = True sorts the list in the descending order.

list.sort(reverse=T

’

Alternatively for sorted() , you can use the following code.

sorted(list, reverse=True)

Example 2: Sort the list in Descending order

vowels list
vowels = ['e’, 'a’,

sort the vowels
vowels.sort(reverse=T

print vowels
print('Sorted list (in Descending):', vowels)

Output

Sorted list (in Descending): ['u"’,

Sort with custom function using key

If you want your own implementation for sorting, the sort () method also accepts a key function as an optional

parameter.

Based on the results of the key function, you can sort the given list.

list.sort(key=len)

Alternatively for sorted:

sorted(list, key=len)

Here, 1en is Python's in-built function to count the length of an element.

The list is sorted based on the length of each element, from lowest count to highest.

We know that a tuple is sorted using its first parameter by default. Let's look at how to customize the sort ()

method to sort using the second element.

Example 3: Sort the list using key

take second element for sort
lef te ond(elem):
n elem[1]

random list
random = [(2, 2), (3.

sort list with key
random. sort(key=takeSecond)

print list
print(’'Sorted list:*', random)

Output

Sorted i SEERFCAT 1) D208 2 N1 30 B3

Python List reverse()

The reverse () method reverses the elements of the list.

The syntax of the reverse () method is:

list.reverse ()

The reverse () method doesn't take any arguments.

The reverse () method doesn't return any value. It updates the existing list.

Example 1: Reverse a List

Operating System List
systems = ['Windows®', "mac0S’, ‘Linux’]
int('Original List:', systems)

List Reverse
systems.reverse()

updated list
int('Updated List:', systems)

Output

Original List: ['Windows®', 'mac0S’, ‘Linux’]

Updated List: ['Linux’, 'mac0S', ‘Windows']

There are other several ways to reverse a list.

Example 2: Reverse a List Using Slicing Operator

Operating System List
systems = ['Windows', 'macO0S', 'Linux']
print('Original List:"', systems)

Reversing a list
Syntax: reversed_list = systems[start:stop:step]

reversed_list = systems[::-1]

updated list
print('Updated List:', reversed_list)

Output

Original List: ['Windows', 'mac0S', 'Linux']

Updated List: ['Linux', 'mac0S’, 'Windows']

Example 3: Accessing Elements in Reversed Order

If you need to access individual elements of a list in the reverse order, it's better to use

the reversed() function.

Operating System List
systems = ['Windows', 'mac0S', 'Linux’]

Printing Elements in Reversed Order

~ 0 in reversed(systems):
print(o)

Run Code »

Output

Linux

macO0S
Windows

Python List extend()

The extend () method adds all the elements of an iterable (list, tuple, string etc.) to the end of the list.

The syntax of the extend () method is:

listl.extend (iterable)

Here, all the elements of iterable are added to the end of 1ist1.

As mentioned, the extend () method takes an iterable such as list, tuple, string etc.

The extend () method modifies the original list. It doesn't return any value.

Example 1: Using extend() Method

languages list
languages = ['French', "English’']

another list of language
languages1 = ['Spanish', ‘Portuguese’]

appending languagel elements to language
languages.extend(languages1)

print('Languages List:', languages)

Output

Languages List: ['French’, 'English', ‘Spanish’, 'Portuguese’]

Example 2: Add Elements of Tuple and Set to List

languages list
languages = ['French’]

languages tuple
languages_tuple = ('Spanish’, 'Portuguese’)

languages set
languages_set = {'Chinese’, 'Japanese'}

appending language tuple elements to language
languages .extend(languages_tuple)

1t('New Language List:', languages)

appending language_set elements to language
languages.extend(languages_set)

print(‘Newer Languages List:', languages)

Output

New Languages List: ['French’, 'Spanish’, 'Portuguese’]

Newer Languages List: ['French', 'Spanish', 'Portuguese’', 'Japanese', 'Chinese’]

Python extend() Vs append()

If you need to add an element to the end of a list, you can use the append () method.

al = [1. 2, 3, 4]
al.extend(b)
print(al)

i aZ =1, 2, (3, 4)]
a2 .append(b)
print(a2)

Output

[2,3, 4]

[2 (35 4)]

Python List insert()

The insert () method inserts an element to the list at the specified index.
The syntax of the insert () method is

list.insert(i, elem)

Here, c1em is inserted to the list at the it index. All the elements after c1en are shifted to the right.
The insert () method takes two parameters:

e index - the index where the element needs to be inserted

e element - this is the element to be inserted in the list
Notes:

e If index is 0, the element is inserted at the beginning of the list.

e If index is 3, the index of the inserted element will be 3 (4th element in the list).

The insert () method doesn't return anything; returns vone. It only updates the current list.

Example 1: Inserting an Element to the List

create a list of prime numbers
prime_numbers = [2, 3, 5, 7]

insert 11 at index 4
prime_numbers.insert(4, 11)

print('List:', prime_numbers)

Output

Example 2: Inserting a Tuple (as an Element) to the List

mixed list = [{1,

number tuple
number_tuple = (3, 4)

inserting a tuple to the list
mixed list.insert(1, number_tuple)

print(‘Updated List:', mixed list)

Output

Updated List: Ef1. 2}, 3. 4). 5. 6. 71]

